Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. The international collaborative Radio Occultation Modeling EXperiment (ROMEX) project marks the first time using a large volume of real data to assess the impact of increased Global Navigation Satellite System (GNSS) radio occultation (RO) observations beyond current operational levels, moving past previous theoretical simulation-based studies. The ROMEX project enabled the use of approximately 35,000 RO profiles– nearly triple the number typically available to operational centers, which is about 8,000 to 12,000 per day. This study investigates the impact of increased RO profiles on numerical weather prediction (NWP) with the Joint Effort for Data assimilation Integration (JEDI) and the global forecast system (GFS), as part of the ROMEX effort. A series of experiments were conducted assimilating varying amounts of RO data along with a common set of other key observations. The results confirm that assimilating additional RO data further improves forecasts across all major meteorological fields, including temperature, humidity, geopotential height, and wind speed, for most of vertical levels. These improvements are significantly evident in verification against both critical observations and the European Center for Medium-Range Weather Forecasts (ECMWF) analyses, with beneficial impacts lasting up to five days. Conversely, withholding RO data resulted in forecast degradations. The results also suggest that forecast improvements scale approximately logarithmically with the number of assimilated profiles, and no evidence of saturation was observed. Biases in the forecast of temperature and geopotential height over the lower stratosphere are discussed, and they are consistent with findings from other studies in the ROMEX community.more » « lessFree, publicly-accessible full text available July 17, 2026
-
Abstract Estimation of uncertainties (random error statistics) of radio occultation (RO) observations is important for their effective assimilation in numerical weather prediction (NWP) models. Average uncertainties can be estimated for large samples of RO observations and these statistics may be used for specifying the observation errors in NWP data assimilation. However, the uncertainties of individual RO observations vary, and so using average uncertainty estimates will overestimate the uncertainties of some observations and underestimate those of others, reducing their overall effectiveness in the assimilation. Several parameters associated with RO observations or their atmospheric environments have been proposed to estimate individual RO errors. These include the standard deviation of bending angle (BA) departures from either climatology in the upper stratosphere and lower mesosphere (STDV) or the sample mean between 40 and 60 km (STD4060), the local spectral width (LSW), and the magnitude of the horizontal gradient of refractivity (|∇HN|). In this paper we show how the uncertainties of two RO datasets, COSMIC-2 and Spire BA, as well as their combination, vary with these parameters. We find that the uncertainties are highly correlated with STDV and STD4060 in the stratosphere, and with LSW and |∇HN| in the lower troposphere. These results suggest a hybrid error model for individual BA observations that uses an average statistical model of RO errors modified by STDV or STD4060 above 30 km, and LSW or |∇HN| below 8 km. Significance StatementThese results contribute to the understanding of the sources of uncertainties in radio occultation observations. They could be used to improve the effectiveness of these observations in their assimilation into numerical weather prediction and reanalysis models by improving the estimation of their observational errors.more » « less
-
Abstract Superrefraction at the top of the atmospheric boundary layer introduces problems for assimilation of radio occultation data in weather models. A method of detection of superrefraction by spectral analysis of deep radio occultation signals introduced earlier has been tested using 2 years of COSMIC-2/FORMOSAT-7 radio occultation data. Our analysis shows a significant dependence of the probability of detection of superrefraction on the signal-to-noise ratio, which results in a certain sampling nonuniformity. Despite this nonuniformity, the results are consistent with the known global distribution of superrefraction (mainly over the subtropical oceans) and show some additional features and seasonal variations. Comparisons to the European Centre for Medium-Range Weather Forecasts analyses and limited set of radiosondes show reasonable agreement. Being an independent measurement, detection of superrefraction from deep radio occultation signals is complementary to its prediction by atmospheric models and thus should be useful for assimilation of radio occultation data in the atmospheric boundary layer.more » « less
An official website of the United States government
